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Considerations on breeding for local
adaptation



FExperimental agriculture 1s a
process based on development
of products

Innovation 1s to be directed to improvement of farming
for the benefit of farmers, consumers, and environment

When thinking of a new variety or a new farming
practice, the target users are farmers

Product profiling
(i.e. design) 1s a
key 1ssue to
achieve 1mpact

* Tdentify a need

* Consider who will
use the product and
why

e Is 1t clear how to
use 1it?

*Is 1t engaging?




« Crop breeding is tasked with developiong producs — varieties — originating
from new genetic combinations. A neverending quest for yield, resistance,
quality...

« Modern crop breeding is largely a legacy of the Green Revolution
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Friedli et al (2019)
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«Conventional» farming: uniform
environment, high-input, high-tech
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Smallholder farming: heterogen
low-input, low-tech
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Number of farms by size

Estimated number of farms by size based on agricultural census data. Shown is the year of the latest agricultural
census data, which varies from country to country.
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Source: Lowder et al. (2016). The number, size, and distribution of farms, smallholder farms, and family farms worldwide. <i>World
Development</i>.
OurWorldInData.org/farm-size « CC BY

Globally, about 570M smallholder farmers support the
livelihoods of 2B people; small farms produce 1/3 of global
food



« Good looking and
high performing
« Requires lots of

Share of improved varieties in Ethiopia
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Molecular breeding for local

Ei@éﬂ@fﬁi@ék@@h and manipulation of genetic factors
to speed up the production of new varileties for:

1

. High vield potential (+ vyield stability) under

low 1nputs

. Potential for adaptation to current and future
climate




First pillar: agrobiodii,

No diversity? No
Improvement!

. b
Vavilov centers &

* Agrobiodiversity 1s nature +
culture; biodiversity that
has been shaped by human
ingenulty

* Agrobilodiversity 1s the raw
material that breeders shape
into new and improved

- varieties R '
Cherinet’s mother, serving coffe Norman Borlaugh
Bahir Dar Ethiopia * The green revolution 1s Nobel laureate

really the most recent step



Current varileties are the result of
thousands of years of selection, which
limits the amount of diversity 1n current
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Genetic potential

Untapped genetic agrobiodiversity
can be sourced from seed banks and
farmer fields
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econd pillar: genomics

Bl * Once you have diversity, you need the
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It 1s now easy and cheap to
produce tons of genomic data,
and the future 1i1s bright!
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BIOTECHNOLOGY

Multiple rereads of single proteins at
single-amino acid resolution using nanopores

Henry Brinkerhoff', Albert S. W. Kang®, Jinggian Liu?, Aleksei Aksimentiev?, Cees Dekker'*

A proteomics tool capable of identifying single proteins would be important for cell biology research
and applications. Here, we demonstrate a nanopore-based single-molecule peptide reader sensitive to
single-amino acid substitutions within individual peptides. A DNA-peptide conjugate was pulled through
the biological nanopore MspA by the DNA helicase Hel308. Reading the ion current signal through

the nanopore enabled discrimination of single—amino acid substitutions in single reads. Molecular
dynamics simulations showed these signals to result from size exclusion and pore binding. We

also demonstrate the capability to “rewind” peptide reads, obtaining numerous independent reads of
the same molecule, yielding an error rate of <107® in single amino acid variant identification.

These proof-of-concept experiments constitute a promising basis for the development of a single-
molecule protein fingerprinting and analysis technology.

RESEARCH

34,5
¥

Aaron Pomerantz 9%, Nicolas Penafiel?, Alejandro Arteaga
Lucas Bustamante®, Frank Pichardo®, Luis A. Coloma®, César
L. Barrio-Amoros’, David Salazar-Valenzuela? and Stefan Prost-®*

!Department of Integrative Biology, University of California, Berkeley, CA, USA, *Centro de Investigacion de la
Biodiversidad y Cambio Climatico (BioCamb) e Ingenieria en Biodiversidad y Recursos Genéticos, Facultad de
Ciencias de Medio Ambiente, Universidad Tecnoldgica Indoamérica, Machala y Sabanilla, Quito, Ecuador,
*Richard Gilder Graduate School, American Museum of Natural History, New York, USA, “Department of
Herpetology, American Museum of Natural History, New York, USA, *Tropical Herping, Quito, Ecuador, *Centro
Jambatu de Investigacion y Conservacion de Anfibios, Fundacion Otonga, Quito, Ecuador, "Doc Frog
Expeditions, Uvita, Costa Rica and *Program for Conservation Genomics, Department of Biology, Stanford
University, Stanford, CA, USA



Third pillar:

Genome

!
Replication C Genes (DNA)

\Transcription

RNA
MRNA

\ Translation

Proteins

Metabolism
Physiology

Phenotype

Once you can read DNA, the

genet:ﬂfa@&nge 1s to understand

what 1t 1s doing

Quantity
Genome = Structure
Organization
Replication C Genes — Structure
i Function
lTranscription \
N Regulation

MRNA
l Translation

\ Proteins
\ Metabolism

Physiology

Environment

GXxE

Phenotype



Afamous

What trait -
Gene (S) —e=—— jrises from the ——
perturbation of ::::
a DNA sequence? agamous

Forward genetics

____TIs variation of -

——a trait ——=— Gene (s)

~ associated with N
genotypilc
variation?




* |tis becoming increasingly clear that

traits are controlled by manifold, 03
small effect loci e
* Quantitative genetic mapping studies ~ Dormatclogis!

Endocrine
== Gastrointestinal
== Hematological
Immunological
Metabalic
Skeletal

are tipically underpowered to
capture small effects (few cases,
many variables)

e Large human studies (e.g. UK |
BioBank) are filling in the gap '

0.24

Mean effect (o)

100 200
Number of genes found



Predictive genomics

* It 1s possible to
leverage big data to
build simple models
predicting outcomes
(phenotypes) given a
set of starting
conditions (genotypes)

Training set: SNP data and trait data

Estimate alelle
effects in a rrBLUP

. Test set: SNP data only, trait data masked

e Genomic selection /

genomlc prediction 1s Estimate phenotypes
usually based on:
* Tralning set: 1n which
individuals are Predictive ability: correlation between

genotyped AND estimated trait values and true values
phenotyped and a model

1s build to relate

these quantities

e Test set: 1n which



OQuter CV

1 Inner CV
Teeton L SREmannananEREEERERRE)
selected
model \ GRasi  EEasssasmasmamas

Hyperparameter
tuning

Test on
selected model

Hyperparameter
tuning
Training set  Validation Training set
inner CV set inner CV outer CV

* In whole—genome

predictions, each SNP
value 1s assoclated with
an estimated
(infinitesimal) effect on
the phenotype

It’s a black box
strategy: we don’t care
about where genes are,
what they do, what 1s the
molecular basis of traits
-> we just care about the
numerical association
between alleles and
phenotypes

.°The effectiveness of
st Predictions 1s tipically

n
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From phenotypic selection to molecular selection to
biotech
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Fthiopia, the land of

Many endemisms, wide topographic
variation

Main settlements b/w 2,000 and
2,500 masl

10 ecosystems, 49 agroecologiles
43% of GDP comes from farming

90% of farmers are smallholders

f 7 WinZene

Ras Dashen (4,533




Durum wheat

Triticum turgidum, tetraploid wheat (subgenomes

AndBpendent
domestication 1n
Ethiopia? (debated)
Cultivated for
traditional
preparations
Estimated 4.2 Million
farmers (13% of
cereal growers)

Low mean productivity
2.7 ton/ha




Sampling Ethiopilan durum
wheat diversity

* Genetlic materials selected on the basis of
passport data of ex situ collections at the
Fthiopian Biodiversty Institute (EBI)

* Purification plot prior characterizati ,

* Dominant types selected: accessions st
need
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* Genotypling with the
11llumina 90K SNP
array

* Diversity panel
collection:

e 798 traditional durum
wheat landraces

* 25 1mproved durum
wheat lines release
for cultivation

Bre®dditg rateinl dbsum
culwheattsed 1n Ethiopia

lack Ethiopian heritage

PC2(43%)

-0.05 0.00 0.05

-0.10

Dejene Mengistu,@

* landraces
o improved lines
* mediterranean

0.00

I
0.05

PC1(20%)

I
0.10




Moving closer to breeding:
(EtNAM)

the Ethiopian NAM

* The Diversity of traditonal
Ethiopian wheat may be
useful for local and
international breeding

* A nested association
mapplng (NAM) design may be
used to recombilne local
diversity with an improved
background, producing at
once:

1.Prebreeding
materials

Kid 1 2019
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50 Ethiopilian
durum wheat
landraces (+ 2
italian lines)
chosen as
female parents
Recurrent male
founder
(Asassa) with
international
background
selected on
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12 NAM families,

100 RIL each

initial characterization

* Genotyping with the Illumina 15k SNP

PC2(4.3%)
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Plant materials: 400 landraces;

éé%ggigl%gterials can be used 1in
a genome wide assoclation study

Bogale Nigir, PhD

] . 250 — — Marker
(GWAS) to 1dentify alleles of SN
breeding relevance, e.g. cseen
resistance to Septoria el L
Accession #8208 and g ¥
#208304 were released as e
Vo deiias i 380 1.7 § 3
é 100 —
g 50 -

| T T 1T T T T 1 T 1T T 1
1A 1B 2A 2B 3A 3B 4A 4B 5A 5B 6A 6B 7A 7B

Chromosome .
Kidane et al 2017



Bringing farmers 1nto
the picture

« Each family-village uses its own seeds,
selected and maintained forward according
to their preference

« Smallholder farmers must be efficient and
knowledgeable: their environment is not very
resilient. Their choice of genetic materials
must be the right choice

 Participatory varietal selection (PVS) can
help accessing this knowledge

Are PVS Do PVS traits

: tralts
traits a : have a
related with : :
genetic basis

metric :
: in wheat?

quantitative
phenotype?




Different wheat agroecologies

Focus group discussions
and survey to identify traits
most relevant to farmers

Scores 1 to 5 given for overall appreciation (OA): how
In each, metric traits collected on much do you like this wheat genotype?

hundreds of genotyped wheat accessions
laid down in a replicated lattice design

1] (IO 7. . 2 <\ S L e

Evaluation given to
each unlabeled
plot, groups
entering from
random entry
points, scoring
system devised to
avoid bias




SCer_ng System Chiara Mancini,

Genetic
materials
never seen
before

Evaluations
gilven
eyeballing
the field

Individual
scores
recorded

400 landraces
in 1200 plots
(Geregera,
Hagreselam)

1200 EtNAM

PDDTT ~ 2 o 75O NN




Farmer scores are
repeatible across genders
and across locations
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Farmer scores and
metric trailts are

related
Low potential area
OA (M)
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Gesesse et al 2023



Farmer evaluations of wheat performance are heritable over year, location,
gender: they have a genetic basis in wheat

Overal appreciation

1.001

Location
0.754 . Adet
N;]: 0.50 1 . Geregera
0.954 . Kulumsa
Combined
0.004

Combmed Women

Agronomic traits

1.00 _
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PVS farmer
scores can
identify QTL
that partially
overlap with
those deriving
from metric
traits (e.qg.,
kernel size,
phenology)

Ssome PVS QTL are
consistent
across
germplasm,

"\V\/‘q



In a pre-breeding perspective:

* Several RILs were outperforming both EtNAM
parental lines and improved genotypes checks

* The performance/preference for specific allelic
combinations 1s location and gender-spegific
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eregera et
MV 4 «D]» . MV 4 ~H]» ST
p=28e-02
4
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7 L}
Node 2 (n=20) Node 9 (n=10)
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1 2 J ‘1 1 "z ‘5 4 .I Z ‘j ‘1‘ 5 1 Z 5 ‘t 5 -15IA29 -3.I35 &239 -15|.29 -3A|35 8.!59 -15129 -3.I35 8.|59 -15|.29 -3A|35 8.;‘:9 -15I.29 -3.I35 8.I59




Towards a quantitative

integration of farmers’ GED
knowledge 1n genomic @ 1crinet

selection breedin PhD
Training set: SNP dafa and

Bogale Nigir,

trait data -
Estimate alelle
effects  Landraces, 1600 plots
« EtNAM RILs, 7200 plots
Validation set: SNP data only, * ITBLUP to perform genomic
trait data masked selection for yield (GY) and
farmer appreciation(OA)
l « Selection conducted on BLUPs

measured across years and

Accuracy: correlation between estimated locations, accuracy monitored
trait values and true values



Training set

DNA markers

Test set

DNA markers

Model traini’

y = Xb + Zu + e

* No QTL mapplng

* No testing for
marker
significance

* No effort to
localize genes

Predict and select

0.40 -

0.35 A

0.30 A

0.25 A

0.20 A

0.15 A

0.10 A

0.05 A

0.00 A

-3 =2 -1 0 1

////// 7
m X mmm)

Best genotypes
are chosen on the
basis of GEBV and
advanced 1in the
breeding pipeline




Overall appreciation (OA) by
PVS provides better accuracy
1n predicting grain yiled
(GY) than GY 1tself

Training: ‘ Testing:
landraces NAM RILs

OA, GY GY

Accuracy

* Note that farmer groups providing
evaluations are different and never seen
the genetic materials before

« Are farmers able to capture the
*expected* yield in local growing
conditions?

0.2 4

o
o

DP to EtNAM yield

il |

Predictors

GYpe
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g

g
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Predicted
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©
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Gesesse et al 20



Towards a decentralized
breeding paradigm

e Selection moves to
1000+ farmer fields

* Varlieties are grown
1n true farm
condition and farmers
are asked to rank
varlietles according
to their preference

* The resulting
accuracy for varietal
development and
recommendation 1s
increased

Many genotypes in each of few locations

S 0
=) €Y

=f g 7

Few genotypes in each of many W VarA  VarB

locations
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N, mim /g
ﬁ . Y ¥ )
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= e
. él-l . - 000
s CHE Em ¢ ‘
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BvarA VvarBlVarCc| VarD

de Sousa et al 2022



The decentralized evaluation of
varietles 1s based on the tricot
approach; 1ncomplete ranking at each
farmer field can be combined into a
measure of worthiness — 1.e., the
tendency 1n outperforming other
varieties ! '

W“HEE A>C>D

W HEE C>D>G
#W“WHEE A>D>G NG

Image courtesy of Kaue de
Sousa

A>‘ > D>G For tricot work and
conceptualization see van

Etten et al 2019, 2020, 2021




The ranking
derived from
decentralized
farms 1n
combination with
climate and
genomic diversity
predicts both GY
and OA 1n
untested
environments with
twlce the
accuracy of
“conventional”
genomlc selection

Approach OA GY

Centralized GS
Season 1 (n=179) 0.134 -0.012
Station
Season 2 (n=651) 0.105 0.076
Season 3 (n=335) 0.183 0.073

0.141 (= 0.039) 0.046 (+ 0.049)
3D-breeding

Season 1 (n=179) 0.270 0.160 r—\
Farms Farms -

Season 2 (n=651) 0.276 0.078

Season 3 (n=335) 0.203 0.119 - - - -

0.251 (= 0.040) 0.109 (= 0.041)



How comes?

* Farmers evaluate yield and yield
components, 1ncreasing the
heritability of the predicted

A decentralized model captures
environmental variation at farm
sites, capturing GxE

trait interactions
* Can farmers evaluate genotype Variation in temperature
stability across seasons? 4
Stations
OAgeregera 0.39 -0.29 -0.12 X2 0.3 -0.14 -0.46 ©
Corr = 2-
x
m" N max NT (°C)
0.5 o
OAgeregeraVW 0.37 -0.27 X1 R 0.29 -0.14 -0.43 oo o I 16
. o ]
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Wrappling up

* The 1nnovation process flows both ways from
researchers to end users;

* There 1s value 1n engaglng 1n a conversation and
open a space for everybody i1nvolved to bring theilr
knowledge to the table;

* The challenge 1s to 1ntegrate genes, phenotypes,
environment, and social scilences to tailor
varleties for local adaptation to achileve
sustalinable 1ntensification of local agriculture;

* Smallholder agriculture and traditional knowledge
are not at odds with modern research; they may be

a resource for breeding - a complement to current
breedinag octrateaglec
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Shortcomings of genomic
prediction

* The genetic basis of some traits 1s still too
complex or too feeble to be efficiliently
predicted (+ ethical consiliderations 1in
medicine)

*Very little number of traits for which a single
gene can be meaningful 1n predicticing outcomes

* The value of predictions depend on the
representativeness of the training data

e Difficult to drive deterministic conclusions: Y
= G + E + G x E

* Good 1n capturing the mean, bad 1n capturing
N1t 1 1era



Molecular biology
does magic

° It has been Shown RESEARCH ARTICLE

PLANT SCIENCE

that modification A transcriptional regulator that boosts grain yields
of relatively and shortens the growth duration of rice
. Shaobo Wei't, Xia Li't, Zefu Lu', Hui Zhang®, Xiangyuan Ye, Yujie Zhou”, Jing L, Yanyan Yan’,
simple molecular S v, g ot o g,
Qian Qian™, Wenbin Zhoi

t a- r g e t S C a- n j— mp r O v e Complex biological processes such as plant growth and development are often under the control

of transcription factors that regulate the expression of large sets of genes and activate subordinate

China's party line on the  Stabilizing high-pressure
It didn’t start here 5. 205 nanoparticles pp.si4 870

: l d f 1 O o t transcription factors in a cascade-like fashion. Here, by screening candidate photosynthesis-related
y l e S r Om (@) O transcription factors in rice, we identified a DREB (Dehydration Responsive Element Binding) family
member, 0sDREBIC, in which expression is induced by both light and low nitrogen status, We show that
6 8 o OsDREBIC drives functionally diverse transcriptional programs determining photosynthetic capacity,
(e} nitrogen ulilization, and flowering time. Field trials with OsDREBIC-overexpressing rice revealed yield

Increases of 41.3 to 68.3% and, in addition, shortened growth duration, improved nitrogen use efficiency,
and promoted efficlent resource allocation, thus providing a strategy toward achieving much-needed

o P h O t O S yn t e S j_ S j_ S increases in agricultural productivity.

R
one of the target

F-o-—om e quon llIngCdDCB the yield and biomass of
of these

r_- .. __2-_polantsinfield trials CATCHING THE
modifications
Qioiny 1y, siwi wiv, by, 1y rvay, oousnd Zhang, Xueping Wang, Yingying Xu, Hong Yu, Yulong_Li,
Junbo Yang, Jun Tang, Hong-Chao Duan, Lian-Huan Wei, Haiyan Zhang, Jiangbo Wei, Qian Tang, Faster adaptation to
changing brightness raises
Chunling Wang, Wutong_Zhang, Ye Wang, Peizhe Song, Qiang_Lu, Wei Zhang, Shunging Dong, Baoan soy yield p.gs1

Song 2 GuifangﬁE ~+ Show authors



Aren” C

breeders
carried
away by

the

mAacico?
Scale up trialstovalidate

modified crops’ benefits

Merritt Khaipho-Burch, Mark Cooper, Jose Crossa, Natalia de Leon, James
Holland, Ramsey Lewis, Susan McCouch, Seth C. Murray, Ismail Rabbi, Pamela
Ronald, Jeffrey Ross-Ibarra, Detlef Weigel & Edward S. Buckler

Withachanging climate

and agrowing population,
the worldincreasingly

needs more-productive and
resilient crops. Butimproving
themrequires a knowledge
of what actually works in
thefield.

range of disciplines to work together much
more than they currently do, and to use
well-established yield-testing approaches.

Perspective is needed
Promising reports of the possible effects on
cropyields ofintroducing agene from another
species, or of using the gene-editing technigue
CRISPR-Cas9 to modify a gene or multiple
genes, attract considerable media atten-
tion. Yet, more-conventional plant-breeding
approachesused over decades painta very dif-
ferent picture of what genetic modifications
arelikelytoachieve, inrelationtoyields,inthe
coming decades.

Whatbreeders and quantitative geneticists

nature

nature > comment > article

COMMENT | 20 September 2023

Genetic modification can improve
crop yields — but stop overselling it

With a changing climate and a growing population, the world increasingly needs
more-productive and resilient crops. But improving them requires a knowledge
ofwhat actually works in the field.

By Merritt Khaipho-Burch &5, Mark Cooper. Jose Crossa, Natalia de Leon, James Holland Ramsey.
Weigel & Edward S. Buckler

In breeders’
yield increase of 1%-5%

hands, a

[¢]

over generation 1is
considered a
breakthrough

E.g. Corteva tested
the effect of 1,071
genes, taken from 47
specles, on complex
traits 1n maize. Only
1% of these genes
increased yield enough
Lo warrant more
investigation

In subsequent rounds
of testing, only zmm28
(a TF) was validated
for a 2% yield
increase and this
required the creation



Fact: a sizable portion of
phenotypic diversity can not be
traced back to genetic factors

100%
Overestimation?
h2 OBS Still-missing
heritability
h? SNP Proportion of
variance
explained by

Proportion of all SNPs
variance

explained by

marker-trait

associations

h? GWS

0%

Missing
heritability

Heritabili
ty: the
proportion

gﬁeno typic Thecase of the missing heritability '

When scientists opened up the human genome, they expected to find the genetic components of

varlance common traits and diseases. But they were nowhere to be seen. Brendan Maher shines a light on
' six places where the missing loot could be stashed away.

that 1s

explained

genotypilc



Studies in History and Philosophy of W‘

. Philosoph
Science oSiene

Volume 93, June 2022, Pages 183-191

(A) Numerical Gap

Three legs of the missing heritability / A 3
Lucas J. Matthews ® © =, Eric Turkheimer ° \ % S\ Ve )
Hidden Heritability Still-Missing Heritability
* Numerical: an 1ssue with numbers, |
related with inadequacy in Fe s - vestisie
observational data (e.qg. —~

experiment size)

Black Box

* Predictive: an 1ssue with (B) . (©)
something that we cannot measure
or that we are not measuring well

enough

Prediction Gap
A

Mechanism Gap
A

b -

Molecular
Genotype

Molecular
Genotype

* Mechanicistic: an 1ssue wilith our
fundamental lack of understanding
of the determinants of complex

L B T




The Numerical 1ssue

Complex traits are complex, and the contribution of each individual locus is small and hard to
detect

High-effect alleles are typically rare and may be missed when the size of the experiment is too
small

Small effect loci can escape detection if the statistical power of mapping is not sufficient
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LETTER

Sparse whole-genome sequencing identifies two loci

for major depressive disorder

CONVERGE consortium*

B 8 10 11 12 13 14 15 16 17 181920212 X

Chromosome

rs12415800

© cas™Peve

©Oq ¢ oonoto

(QUN 480 |NS) D1 UOHRUIGLUCK

ey
‘-q o0 o©
‘hf 707 ";‘1 e 0

T T
69.5 69.6 69.7 69.8 69.9

Position on chromosome 10 (Mb)

—log, (P value)

rs35936514

T
126

T T T T T
126.1 126.2 126.3 126.4 126.5

Position on chromosome 10 (Mb)

2015 - 11,0670 Han Chinese women; 6.2M SNPs; 2

doi:10.1038/nature 14653

associliations
2018 - 480,359 Europeans; 9.6M SNPs; 44

associations
2022 - 1,815,091 individuals from different
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Genome-wide association analyses identify 44
risk variants and refine the genetic architecture of

major depression
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Multi-ancestry genome-wide association
study of major depression aids locus
discovery, fine mapping, gene prioritization
and causal inference
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Gui et al. Genome Biology ~ (2022) 23:178

Genome Biology
https://doi.org/10.1186/13059-022-02742-7

RESEARCH Open Access
A pan-Zea genome map for enhancing S

maize improvement Pangenome

Songtao Gui', Wenjie Wei', Chenglin Jiang', Jingyun Lua', Lu Chen', Shenshen Wu', Wengiang Li', Genome 1 Genome 2

Yuebin Wang', Shuyan Li', Ning Yang', Qing Li'?, Alisdair R. Fernie® and Jianbing Yan'*"®

M Agronomic MMethylation BExpression MMetabolite M Protein

A Morphic/Yeiid MmT TT W T01 E Cloud genome
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Fig. 4 Characteristics of the phenotype associated QTLs, genes, and causal variants. A Distribution of the
associated QTLs, genes, and causal variations (example with chromosome 1, see Additional file 1: Fig. S14
for the whole genome). The heatmap represents the QTL density within each 1-Mb window, while the
histograms indicate the density of the candidate causal variants that were normalized with the number of
all variants within the 1-Mb window. B Proportions of QTL types (QTLs lead with different variant types). C
Proportions of INDEL/SV-specific QTLs (QTLs that cannot be detected by SNPs). D Proportions of associated
QTL type Non-SNP QTLs Associated gPAV's gPAVs for the reference genome genes (Ref-Genes) and non-reference genome genes (NonRef Genes).

E Manhattan plot of the association result of the Gal locus related to the ratio of seed sets, with gPAVs
highlighted in red. F The proportion of different levels of seed set ratio related to the absence/presence of
PZ00001a032490; the larger the number, the higher the seed set ratio. G The genome alignment indicates

INDEL

1,546

AN3L (77.11%)

24,618
(43.29%)

F Raﬁo of seed set G

Ratio of seed sets GWAS (G locus) 12E0H PanRep_01830125

p<ooo0t 2947

4
40 ﬂ“'uptl_ﬁmv IP?.(.I00E|15032490 Z1.00 the anchoring of the NRS (PanRep_01830195) on the AGPv4 genome, and the schematic plot illustrates
& :Sé’w ity E AGPv4 cmft_:g_;,_spaam-gmar-zz:{__ﬂ the differences between the three PME genes (PZ00001a032490, SDGa25, and Zm00001d048936). Solid
5 80 o .. go w0 "';’.r}.}namre-_ cag==TAG - rectangles indicate the gene coding sequence, while the dashed rectangles indicate the missing coding
TS‘ 20 ) i Eg ) part related to SDGa25. Gray ribbons indicate the matched blocks. Pink ribbons indicate the matched CDS
" ~ , ! % blocks. H Distribution of the PAV patterns (track 2) of the six PME genes and the ratio of seed sets (track 3)
: oo T - according to the structure tree of pan-Zea individuals (track 1). I Distribution of the number of presented PME

78 9 M0 11 12(My) q.,z:(dp“ genes (# PMEs) related to the levels of the seed set ratio. The gray histogram is the distribution of total sample
LR A _: numbers (count) according to the X-axis, while the colored histogram indicates the proportions. The P-value
was calculated from 10,000 permutations of the Wilcoxon-Mann-Whitney test



The Predictive 1ssue

In crops: although single genes can affect complex traits, such genes typically operate in conjunction with
soil and fertilizer management regimes, the hundreds of other genes involved in crop domestication and

adaptation, and so on. Moreover, measurements of phenotypes are noisy
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The Mechanicistic 1ssue

There are different mechanisms of contribution to traits, and many are still
poorly understood and/or hard to model
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Epistatic QTLs for yield heterosis in tomato

[s] 4 Dl
=} 4

80 epistatic combinations, 19 more-than-
additive

* Validated a single epistatic
interaction 1involving S. pennellii
QOTLs on chromosomes 1 and 7, that
independently did not affect yield,
increased fruit yield by 20 to 50% in
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ARTICLE

Estimation of non-additive genetic variance
in human complex traits
from a large sample of unrelated individuals

Valentin Hivert,! Julia Sidorenko,! Florian Rohart,! Michael E. Goddard,23 Jian Yang,!
Naomi R. Wray,!:®> Loic Yengo,!.® and Peter M. Visscher!.t.*

Summary

Non-additive genetic variance for complex traits is traditionally estimated from data on relatives. It is notoriously difficult to estimate
without bias in non-laboratory species, including humans, because of possible confounding with environmental covariance among rel-
atives. In principle, non-additive variance attributable to common DNA variants can be estimated from a random sample of unrelated
individuals with genome-wide SNP data. Here, we jointly estimate the proportion of variance explained by additive (him,), dominance
(6§M,) and additive-by-additive (n2yp) genetic variance in a single analysis model. We first show by simulations that our model leads to
unbiased estimates and provide a new theory to predict standard errors estimated using either least-squares or maximum likelihood. We
then apply the model to 70 complex traits using 254,679 unrelated individuals fzrorn the UK Biobank and 1.1 M genotyped and imputed
SNPs. We found strong evidence for additive variance (average across traits hgyp = 0.208). In contrast, the average estimate of dgyp
across traits was 0.001, implying negligible dominance variance at causal variants tagged by common SNPs. The average epistatic vari-
ance fayp across the traits was 0.055, not significantly different from zero because of the large sampling variance. Our results provide
new evidence that genetic variance for complex traits is predominantly additive and that sample sizes of many millions of unrelated
individuals are needed to estimate epistatic variance with sufficient precision.

Non-additive variance can be easily detected in
experimental conditions (e.g. hybrid
generation), however it is hard to estimate
correctly in colletions of unrelated
individuals

* UK biobank data, 1M SNPs and 250K
individuals, different traits

* Additive variance has a clear contribution,
not so much dominance and epistasis



Acknowledglng
complexity — the
breeders’ way

Kai Peter Voss-Fels' © - Mark Cooper!

It doesn’t really matter which A Germplasm

Pool

gene does what; basedon 0o —fo 2%

Target Population

large observational datasets it of Environments

- Ben John Hayes'

Germplasm
Pool

IS possible to model the B :.:icion DR

relation between genome-wide

diversity and phenotypic

outputs (and predict traits) Baced on

« Depending on the trait, the FenoRmanos
data, and the model, you
may end up with different

Target Population
of Environments

Multi-environment trials

Prediction

-,

prediction accuracies

Analysis

Data
analysis

Phenotype Data

Genotyping

O3 SRdd N -
< ‘.2. ety tn JHEE L 0 4 !
"y 2o trnnee s T e o L
e T el e f § ia |
roses '
et 3

Accelerating crop genetic gains with genomic selection

Sampling

Evaluation

Envirotyping /
Intermediate traits
P—— | 1

E nteled

.| Genomic |
| Prediction

analysis

Enhanced
GxE modeling




GS models do a fairly good

job capturing the complexity

of the trait, and adding prior

iInformation (e.g. GWAS hits)

makes a little difference

 However, GS models are
sensitive to the
representativeness of the
training of the model (and
bound to the allelic
diversity and LD captured
INn the process)

Exploring the potential of incremental
feature selection to improve genomic
prediction accuracy

Felix Heinrich"”®, Thomas Martin Lange', Magdalena Kircher?, Faisal Ramzan?, Armin Otto Schmitt'#" and
Mehmet Gltas**™"

Soy
HT
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Fig. 2 Prediction accuracy of soy phenotypes. Prediction accuracy (measured as mean R°) of soy phenotypes as a function of the number

of SNPs used for the model (presented as logarithmic values) on the @ data. The trend estimate, represented by the solid black curve, is obtained
through smoothing. The maximum accuracy is indicated by the vertical green line. Mean performance of the model when trained on all SNPs

is represented by the horizontal black line, with the shaded interval around it indicating the standard error of the mean of 10 cross-validation
repetitions. The prediction accuracy of all three traits could be increased by up to 0.02 using IFS
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