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Some important concepts

Genomics provides
the means to
characterize the
allelic diversity in
large collections of
plant genetic

resources

Genome

|

Replication € Genes (DNA)

lTranscription

RNA
mMRNA

Translation

Proteins

Metabolism
Physiology

Phenotype

The central dogma (Crick 1958):
information flows from DNA to phenotypes

Phenomics allows

to measure a
number of traits in
different genetic
backgrounds and
environments



To map genotype-trait associations means to detect, locate,
and assess the importance of «genetic factors» affecting traits

Mapping genotype-trait associations in plant genetic resources
unlocks key information for breeding:

1. ldentify new genetic factors/alleles that can be used to
improve traits of agronomic performance and adaptation

2. Predict the genomic potential for any given individual with
regards to a trait of interest

3. Understand the genetic basis of traits of interest



The value of diversity contributed

by plant genetic resources Elites

* Depending on the type of allele pooal, Breeding
there are different types and amounts of e
diversity available (and hence a different
potential in association studies) Landraces

Wild relatives
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Agronomy

* Yield and yield
component traits
(e.g. spike size)

* Developemental
traits (e.g. flowering
time)

* Quality traits (e.g.
micronutrients)

* Market traits (e.g.
colour, taste)

Adaptation

» Resistance to abiotic
stress (e.g. drought)

 Resistance to biotic
stress (e.g. disease)

Future-proofing

* What is neeeded for
adataptation to
future climates (e.g.
frequency and
intensity of extreme
events)

Elites

Breeding
materials

Landraces

Wild relatives

Related species
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Our working hypothesis: there are one or more «genetic factors»
somewhere on the genome affecting a trait of interest

We already know it’s not an easy job:
* Most interesting traits are controlled by multiple genetic factors
* Most plant genomes are complex; loci may interact

* It is not really like finding a needle in a haystack; it is finding a needle in
pile of needles
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Reverse genetics Trait(s)
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Field Evaluation of Mutagenized Rice Material

Sydney D. Johnson EJ Dennis R. Taylor, Thomas H. Tai, Joanna Jankowicz-Cieslak, Bradley J. Till & Alpha
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Forward genetics in plant genetic resources

e Stem rust (Puccinia graminis f. sp. tritici) is a devastating disease in wheat
that may cause up to 100% losses

* A major target of breeding from the green revolution

* There is plenty of resistance genes that have been introgressed from wild
species

* T. timopheevi
* Ae. ventricosa
* Ae. speltoides
* Ae. tauschii
» S. cereale
* T. monococcum




* Race Ug99 (TTKSK) emerged and overcame resistance of many known
genes

* New resistance alleles were found in african landrace materials and
transferred to elite materials to confer resistance

Theor Appl Genet (2013) 126:1237-1256
DOI 10.1007/s00122-013-2050-8

Searching for novel sources of field resistance to Ug99
and Ethiopian stem rust races in durum wheat via association
mapping

——

THE SPREAD OF WHEAT STEM RUST UG99 LINEAGE]

Tesfaye Letta - Marco Maccaferri -
Ayele Badebo - Karim Ammar - Andrea Ricci -
Jose Crossa - Roberto Tuberosa
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Across Africa
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Elsabet Wessels', Corneli Smit', Cornel Bender?, Davinder Singh* and Lesley A. Boyd**
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Forward and
Reverse genetics
are not at odds
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RESEARCH ARTICLE

Metabolic Engineering to Enhance Provitamin D3
Accumulation in Edible Tomatoes

sunmee Choi" Min Kyoung You" YurrA Jeon!T Jaebok Lee! Jinhwa Kim! Young Jin Park’ Jeongmo Kirn, Jongjin Park!
RES)

Jae Kwang Kim? and Sunghwa Choe

Abstract

Ensuring adequate levels of vitamin D3 in the human diet has long been an important objective in crop breeding,
as most crops have extremely low levels of this compound. To address this challenge, we have employed the CRISPR-
Cas? gene editing system in tomatoes 1o induce loss-of-function mutations in one of the two DWARFS genes, a
homologue of the human dehydrocholesterol A’ reductase gene. Lines with knocked out SIDWFSA gene exhibited
visually indistinguishable phenotypes, yet remarkably accurnulated provitamin D3 levels as high as 6 pg/g dry weight
(DW) in the red fruits. As the daily recommended intake of vitamin D is 20 pg (800 IU), consuming a single ripe fresh
tomato weighing 150 g (equivalent 159 DW) has the polential Lo significantly alleviate widespread vitamin D defi-
dencies worldwide.



A recipe for forward genetics: genome-wide
association studies (GWAS)

Our ingredients:

1.

Genetic materials, a set of plant genetic resources in which variation is
present for certain traits

Phenotypic values measured on the set of genetic materials and
representing variation of interest

Molecular markers typed on the set of genetic materials; most commonly
SNPs, which are bi-allelic and distributed genome wide

Appropriate statistics to connect genotypes and phenotypes; many
methods, same underlying reasoning



* Many different methods, same underlying reasoning: is there any given
allele (marker) associated with the value of the trait of interest?

* In other words, we want to know whether our response variable (y, the
phentoype) is associated with our explanatory variable (x, the marker)

* We can address this in a simple statistical framework based on a linear
model

y=,80+,81X+€ Ho: B1 =0 Hy: p; #0



The recipe at work

Research question: climate change is affecting seasonal rainfall
distribution in Ethiopia; there is the need to steer breeding towards
early flowering genotypes to improve local adaptation; plant genetic
resources may have useful alleles to contribute to this

1. Genetic materials: A
representative collection of 250
Ethiopian barley landraces and
breeding lines
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2. Phentoypic values: Days to flowering measured on all genetic materials for
which genotypic data is also available

Days to Heading
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3. Molecular markers: 23K+ SNPs
describing the diversity of genetic
materials across the whole genome
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4. Appropriate statistics



4. Appropriate statistics

Trait

T s B R

Individual

Phenotypic
variation (y)



e Each individual is different from the others; when we genotype them with SNPs, we obtain
biallelic markers at each locus, with different outputs depending on their allelic diversity

* We don’t really need to worry about nucleotides; let’s rather think in terms of alleles, and
let’s call the allele 0 when it is the same as the reference genome and 1 when it is different

Homozyogous reference: 00

Heterozygous: 01 Homozygous aternative: 11

.. IDN Ref. genome

%’M”%a‘j’fé%’%%’%ﬁ%%”%% %
'l‘!\ lll %

SNP 1
SNP 2

SNP 1 00 01 11 00
SNP 2 01 11 00 01 00 11 11 11

SNP N 11 00 00 11 11 11 00 01




Running a GWAS fitting a
linear model to connect
phenotypes and alleles at
each locus

SNP 1
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Trait

No association; this is the
outcome expected on most
tests (as most of the
markers/loci have nothing to
do with the trait)
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Association; it seems that the response
variable is associated with the explanatory
variable, and we expect it to happen rarely. To
what extent the association is significant, the
statistics tells us

y =B+ P1x+e¢




~log(p)

The model is tested on all markers; if you have 1M markers, that’s 1M tests!
Each test is specific to a marker, which is specific to a genomic location

The common representation of the outcome is a Manhattan plot which puts
together position on the genome (x) and significance of the associated test (y)

Marker-trait
association
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Remember that SNP markers, however many they may be, seldom
represent the full extent of variation in the genome

* Markers are our proxy to represent variation in the DNA level; they
are the mean to an end and not the end itself

SNP 1 SNP 2 SNP 3 SNP 4

i L Il U

The reason why we capture the «effect» of
a specific genetic factor on the value of the
trait through GWAS is that linkage
disequlibrium (LD) exists between the
marker and the causative variant
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A key concept when it comes to
mapping is that of linkage
disequilibrium (LD)

e LD is the non random association
of alleles at different loci in a
given population

* It occurs when alleles at different
loci are inherited together more
often than expected by chance

e Recombination decreases LD

* Throughout time, populations
move from disequilibrium to
equilibrium (assuming that
recombination occurs)

Linkage disequilibrium
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Back to Ethiopian barley genetic resources now

(@  Days to Heading (DH) : What’s next?

- : * Characterize gene

o o o

2" . : models in the region

B - HPUg S * Develop segregating
populations to fine

map genetic elements

* Design cheap markers
tagging loci of interest

Genome Track View Help .
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One locus
(1:251)

Trait determination complexity u Red e
2
* Most traits of agronomic interest are complex :
* They have a quantitative manifestation that is the : Color
result of the cumulative contribution and e

interaction of n loci, each with a fraction effect on
the trait

* Hence, the term Quantitative Trait Loci (QTL) s
mapplng A\ (1:6:15:20:15:6:1)

Number of wheat grains

Number of wheat grains

Color

n loci
(continuous)

Number of wheat grains




Caveats

The identification of genotype-trait association is a challenging effort
depending on many variables, including:

Diversity available in plant genetic resources

Sample size and experimental design (statistical power)

Nature and extent of molecular characterization of the mapping panel /
Frequency of recombination (linkage disequilibrium)

Organization of the genetic diversity in the population (genetic structure)
Complexity of the trait and heritability

Genetic structure GWAS Covariates

N s

Markers Phenotype




Developement of mapping populations

Mapping (NAM) panel

d Association
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An issue with complexity

It is becoming increasingly clear that o=

traits are controlled by manifold, Functional dom
. == Cancer
Sma” effect IOC' gﬁ;?::i?-::gml

= Gastrointestinal

= Hematological
Immunological
Metabolic
Skeletal

Quantitative genetic mapping
studies are tipically underpowered
to capture small effects (few cases,
many variables) ol
Large human studies (e.g. UK

NS —l :
BioBank) are filling in the gap B —

200
Number of genes found

Mean effect (o)
=
k3




Heritability is the proportion of phenotypic variance that can be explained
by genotypic variance; the higher, the easier to map
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GWAS/forward genetics is a statistical excercise. Presence of a QTL/marker-trait
assciation is defined on the basis of a significance threshold, and depending on it
theres a certain chance of committing Type | and Type Il errors

Type | and Type Il Error
Probability of making Type | and Type Il errors

Null hypothesis is ... True False

Alternative hypothesis

Type | error Correct decision Null hypothesis (Ho)
(H,) distribution

distribution

Rejected False positive True positive
Probability = a Probability =1- B

Correct decision Type Il error
Not rejected True negative False negative
Probability =1- a Probability = B

Type Il error rate Type | error rate

Reverse genetic approaches may be used to «validate» associations



Once marker-trait associations are identified

Design markers
that can be
used by
breeders to
follow the
segregation of
a trait of
interest

1. Assay components: A) KASP Assay Mix B) KASP Master Mix =",
A) KASP Assay Mix: consists Allele-specific forward primers i@a;
of 2 allele specific primers and et s
1 reverse primer. b—s rad
aleie2 n
B) KASP Master Mix: contains & &
universal fluorescent probes, Reverse primer: 3[ s =[]s
Taq polymerase and dNTP's in T
an optimised buffer solution.
C) DNA template (sample) )
C) Sample DNA: DNA s’ 3
contains the SNP of interest. IIJIIIIIIIIIIIII-IIIIIIIIIIIIIIE.
[or]
2. Denatured template and annealing _
components - PCR round 1:
5 ¥ Allele-1 tail FAM-labelled
(allele-2 primer does not elongate) [EEEEEEERREREEEE oligo sequence
A mmmmoe B ———— Allele-2 tail HEX-labelled

c
L1111 i AL ii il illl
7 & -

In the first round of PCR, one of the allele-specific primers matches the target
SNP and with the common reverse primer, amplifies the target region.

oligo sequence

Common reverse primer
FAMdye
HEXdye

Target SNP

3. Complement of allele-specific tail sequence
generated — PCR round 2:

DR

~IJ
JJJLLLLJ_IJ_IJ_IJ.IJ. 11 IJ(Ca.l ILLLI L irreiny

c9O0000

Quencher

(Reverse primer binds,

elongates and makes a
complementary copy of
the allele-1 tail.)

4. Signal generation — PCR round 3:

FAM-labelled oligo binds to new complementary
:e:_’_hTTTTT:iI sequence and is no longer quenched
1ITrATrmT rrch rIrrTrnTr
‘LLL'L'LLL.LLIIIIII||I|l||ﬁ|l||||||l|||||||

In further rounds of PCR, levels of allele- specific tail increase. The
fluor labelled part of the FRET cassette is complementary to new tail
sequences and binds, releasing the fluor from the quencher to generate
a fluorescent signal.

5105

Fluor for ncorperated  Fluor for nom-incorporated

G allle o longer T afele remains
quenched quenchad

120
100
80
60
40
20

125 FRIGIDA

23

T:T G:G T:G



Use of mapping information for breeding

Once a marker-trait

sssss iation is discovered, it
can be used to accelerate
the developement of new
varieties with improved
traits










Forward genetics in plant genetic resources

e Stem rust (Puccinia graminis f. sp. tritici) is a devastating disease in wheat
that may cause up to 100% losses

* A major target of breeding from the green revolution

* There is plenty of resistance genes that have been introgressed from wild
species

* T. timopheevi
* Ae. ventricosa
* Ae. speltoides
* Ae. tauschii
» S. cereale
* T. monococcum




* Race Ug99 (TTKSK) emerged and overcame resistance of many known
genes

* New resistance alleles were found in african landrace materials and
transferred to elite materials to confer resistance

Theor Appl Genet (2013) 126:1237-1256
DOI 10.1007/s00122-013-2050-8

Searching for novel sources of field resistance to Ug99
and Ethiopian stem rust races in durum wheat via association
mapping

——

THE SPREAD OF WHEAT STEM RUST UG99 LINEAGE]

Tesfaye Letta - Marco Maccaferri -
Ayele Badebo - Karim Ammar - Andrea Ricci -
Jose Crossa - Roberto Tuberosa

Lrassmark

Stem Rust Resistance in a
Geographically Diverse Collection of
Spring Wheat Lines Collected from
Across Africa

Renée Prins 2!, Susanne Dreisigacker’?, Zakkie Pretorius?, Hester van Schalkwyk "2,
Elsabet Wessels', Corneli Smit', Cornel Bender?, Davinder Singh* and Lesley A. Boyd**

' CenGen (Pty) Ltd., Worcester, South Africa, ? Department of Plant Sciences, University of the Free State, Bloemfontein,
South Africa, * International Maize and Wheat improvement Centre, Mexico City, Mexico, * Faculty of Agriculture and
Envirenment, Plant Breeding Institute Cobbitty, University of Sydney, Narellan, NSW. Australia, °* Department of Genetics and
Breeding, National Institute of Agricultural Botany, Cambridge, UK



* Itis becoming increasingly clear that
traits are controlled by manifold,
small effect loci

* Forward genetics are tipically

underpowered to capture small The case of the missing heritability
effe CtS (feW case S, ma ny Va ri 3 b I e S) o s oo i e e
* Large studies are starting to fill in Furcionl dom
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It is easier to map QTL for disease \

resistance than to map QTL for yield
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From Lopez-Cortegano, Caballero 2018



Towards gene identification

The mapping resolution cc 455 | MR I —— 2

depends on recombination
density

It is very infrequent to be able to
identify individual causative
variants, and this depends on a
number of factors:

* Marker density

* Recombination density

* Complexity of the trait

e Quality of the annotation

icc 1os2 | I 222

9 Mb 16 Mb



Developement of mapping populations

Mapping (NAM) panel

d Association
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Decomposing phenotypic variance in quantitative

traits

Vyp = Vg + Vo + Vo

 The performance of each
individual is determined both by
its genotype composition and by
the environment

* The best performer in one
environment may not be the best
in another

A

Phenotypic Response

Phenotypic Response

Phenotypic Response

Phenotypic Response

Cross-over



Decomposing genotypic variance in quantitative
traits

@ @ %
=2 =2
s s 1
2 2]
2 2
Ve =V, +Vpy+V 2 g ¥
G A D I s s
= =
[ [
0 1 2 0 1 2
Genotypic Value Genotypic Value
Number of A alleles Number of A alleles

Genetic variance can also be decomposed in fundamental components:

* Additive genetic variance (A), refers to the deviation from the mean
phenotype due to inheritance of a particular allele and this allele’s relative
effect on phenotype, i.e., relative to the mean phenotype of the population

 Dominance variance (D) due to interactions between alternative alleles at a

specific locus
* Interaction or epistatic variance (l) due to interaction between alleles at

different loci



The heritability of a given trait is calculated as the fraction of the trait
variance that can be explained by genotypic variance

0] o)
H? = —~ h? = —2
04 T+ Op 04 T Og
Broad sense heritability: all sources Narrow sense heritability: only additive
of genetic variance are considered genetic variance is considered

* If H?is 0, none of the phenotypic variation can be explained by the genetic
variation, it is all due to variation in the environment

* If H?is small, the trait is strongly influenced by the environment (e.g., yield)

* If H?is large, the trait is only slightly influenced by the environment (e.g. flower

colour).



Genotype 1 Genotype 2
A) /T S S o lnkld
rapa rep 2 rep 1 rep2

Statistical modeling

Heritability:
Based on error plot variance
ag
ag + (0&/n)

2 oy
HStandard o

Based on average genotype

1s.eq
\

B) Ky

K2

In a breeding perspective,
heritability is quite
important

t s.e; standard error
v 2
A HZ, . =—8___
Characters Heritability
Broad sense (%) Narrow sense (%)

Plant height (cm) 71 48
Number of panicles / plant 30 14
Number of spikelets / panicle 32 29
Number of fertile spikelets / panicle 36 27
Percentage spikelets fertility / plant 49 47
100 grain weight / plant (g) 67 50
Grain yield / plant (g) 32 19



Common misconceptions about heritability

* “A heritability of .4 means that 40% of the trait is determined by
genetics”. Nope. A heritability of 0.4 indicates that 40% of all the
phenotypic variation for that trait is due to variation in genotypes for
that trait (and not that in each plant 0.4 of the phenotype is
determined by genes)

* “A low heritability means that trait is not determined by genes”.
Also wrong; low heritability may be due to low variance (in the
population) or too much error

* “A heritability is a fixed value”. It really is a population value and

depends on genetic materials and experimental conditions in which
variances are assessed

* “A high heritability implies a major-effect QTL". It could actually be
due to a number of different QTL (each with small effects)



QTL mapping

* AQTL s a locus contributing to the phenotypic value of a complex
(multigenic) trait

* QTL mapping aims at the dissection of complex traits into Mendelian
factors: understand their location and their relative importance

QTL mapping to-dos

e Control environment & vary genetics y=po+ P1xte

e Use a panel of genetically diverse plants
with different trait levels

* Leverage statistical association between
alleles and trait levels to find genomic

loci and possibly genes

Phenotypic value



The identification of QTL is a challenging effort depending on many
variables, including:

e Diversity in the mapping panel

* Frequency of recombination (linkage disequilibrium)

* Nature and extent of molecular characterization of the mapping panel
 Complexity of the trait (heritability)

e Sample size (statistical power)

Genetic structure Quantitative Trait Loci (QTL) Covariates

N s

Markers Phenotype




The genetics of quantitative traits:
challenges and prospects
*' Eric A. Stone*® and Julien F. Ayroles*'

dy F. €. Mackay*', Eric A

QTL mapping requires four
things:

1. Segregating genetic -
materials LS o, = T

2. Genetic markers

characterizing the S —
mapping population IR -

3. Consistent and :
reproducible phenotypic | &
data ‘L-&;,..,\, s

4. Appropriate statistics

ada Q a

12810K 12820K



Diversity panels = groups of individuals
collected from nature and resulting from
an history of intermating

e Tipically high diversity

* High recombination density

* Differently from experimental crosses,

the pedigree (derivation) of individuals
is unkown
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Multiparental mapping populations (MPPs) = artificial segregant
populations developed intercrossing 2+ parental lines

* Tipically high diversity Nested Association Mapping (NAM) panel  Mult-parent Advanced Generation Inter-Cross (MAGIC)
* High recombination i i LR UL VR LU
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2. Molecular markers

* Gentotyping information is necessary to characterize the genetic diversity in
the mapping population

* You have all sort of molecular markers to choose from, the most accurate
being single nucleotide polymorphisms (SNPs)

Individual sequences Haplotypes * A haplotypeiis a
combination of alleles at
GATATTCGTACGGATT multiple loci that are
transmitted together on
GATGTTCGTACTGAAT AGT the same chromosome
GATATTCGTACGGATT # GTA * Looking back at genetic
GATIATTCGTACGGAAT materials, a haplotype
AGA represents a group of loci
GATGTTCGTACTGAAT within an organism that
GATGTTCGTACTGAAT was inherited together

from a single parent.
SNPs  A/G G/T A/T



A key concept when it comes to
mapping is that of linkage
disequilibrium (LD)

e LD is the non random association
of alleles at different loci in a
given population

* It occurs when alleles at different
loci are inherited together more
often than expected by chance

e Recombination decreases LD

* Throughout time, populations
move from disequilibrium to
equilibrium (assuming that
recombination occurs)

Linkage disequilibrium
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Linkage Within A Family Linkage Disequilibrium Within A Population

Recombination Point

\ | | Initial
Generation
! * | . I
| [ [ | N |
I Initial
| 18] - Generation
‘ (I I S —
+ @
c
I [ S
Generation 1 ®
[ I | o
[}
g
. [ J & "mEn i
@
I =
| a [N N B .
3 100
J § m ! Generations
- [ .
* o
3 T MW T (7T W
[I— 3
4 Generation 2 g’n
e J | 5
3
£
[ I z
w—
o
>
| S
@
a

1000

|
— ) [0 T T T T T T CIT 7 Generations
T am Generation 3

a
Linkage between two points/

markers Population moves from Linkage Disequilibrium to Linkage

Equilibrium over time

https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1002822



3. Well measured phenotypes

* In order to support QTL mapping, measurements must be
repeatible (remember G x E) and accurate (lower error)

* Nowadays, phenotyping comes in a —omics dimension




4. Appropriate statistics

* Many different methods exist, depending on population,
distribution of traits, genetic mechanisms considered, molecular

markers, ... -
| y=Ppo+pf1x+c¢
* TWO main avenues:

* Linkage / interval mapping; When pedigree is known (artificial
populations) and intervals of markers — rather than individual markers —
is used to support mapping. The resulting statistic is the logarithm of
odds (LOD), or the log of the probability of having a QTL in a specific
location over the probability of not having it

* Genome-wide association studies / LD mapping; a mapping conducted
marker by marker, used in diversity panels. The resulting statistic is a p-
value coming from testing the alternative hypothesis of a genotypic
effect on the trait



Linkage mapping

Low marker
density required
Fully known
pedigree

More robust

Limited variation
Low definition
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Forward genetics is a statistical excercise
(LOD or pvalue). Presence of a QTL is defined
on the basis of a significance threshold

Type | and Type Il Error

Null hypothesis is ... True False

Type | error Correct decision

Rejected False positive True positive
Probability = a Probability =1- B

Correct decision Type Il error
Not rejected True negative False negative
Probability =1- a Probability = B

y=Ppot+p1x+e
H0:ﬂ1=0 HA:ﬂl *0

Probability of making Type | and Type Il errors

Alternative hypothesis

Null hypothesis (Ho)
(H,) distribution

distribution

Type Il error rate Type | error rate



Multiple testing problem: when conducting multiple statistical tests

simultaneously, the chance of incorrectly rejecting a true null hypothesis

(false positive) increases

* Bonferroni: the nominal test p-value (tipically 0.05) is divided by the
number of independent tests performed

* False Discovery Rate (FDR): an adjusted p-value distribution that is
specific to each test and that takes in account the expected proportion of
false positives among all significant tests

* Permutations: scrambling the phenotypic values and looking for QTL
(expecting not to find any). Reapeat a large n of times and produce a
distribution of statics that represents noise. Then pick a threshold
according to the distribution
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Figure 1| Power to localize and detect quantitative trait loci. a | Numbers of individuals (log, scale) required to
detect quantitative trait loci (QTLs) for a range of effect sizes {Ei“'crh_} in backcrossed (blue) and F2 ired) linkage mapping
populations. b | Numbers of individuals (log,  scale) required to detect QTLs for a range of effect sizes in association
mapping populations in which the minor allele frequency is 0.5 (blue), 0.25 (red) and 0.1 (green). ¢ | Log, , of the number
of individuals required to detect at least one recombinant in an interval of size ¢ (c = 100 centiMorgans; cM) (blue) and
log,, of the number of marker genotypes needed to localize QTLs per 100 cM (red). d | The expected frequency of
recombinants after t generations of recombination in a random mating population, for a per generation recombination
fraction of ¢ = 0.01 (blue), ¢ = 0.005 (red) and ¢ = 0.001 (green). 8, average difference in the trait phenotype between
marker allele genotypes; o,,, phenotypic standard deviation of the trait within marker genotype classes.
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Table 1 Heritability estimated on a line mean basis

Heritability
Family/panel Plots evaluated PHT EHT DTA NPH
NAM families 57,142 092 093 0584 0.89
B73 x B97 1,924 093 093 084 0.85
B73 x CML103 1,914 091 091 087 091
B73 X CML228 1,770 092 093 0594 0.89
B73 x CML247 2,006 093 0893 083 0.87
B73 x CML277 2,020 092 092 0594 0.88
B73 x CML322 1,859 092 092 091 050
B73 x CML333 1,892 093 093 094 091
B73 x CML52 1,860 092 092 092 0.88
B73 x CMLES 1,91 093 0594 089 0.86
B73 x Hp301 1,921 092 092 0980 091
B73 = IN4H 1,805 093 093 091 093
B73 x Kil1 1,905 093 084 084 089
B73 x Ki3 2,041 092 092 093 09
B73 x Ky21 1,918 093 093 084 091
B73 x M162W 2,023 092 092 091 092
B73 x M3TW 1,942 091 091 089 0893
B73 x Mol18W 1,830 082 083 083 092
B73 x M571 1,896 092 092 089 091
B73 x NC350 1,841 093 09594 092 0289
B73 x NC358 1,861 092 092 086 0.88
B73 x Oh43 1,920 085 084 081 050
B73 x Oh7B 1,880 0594 095 080 091
B73 x P39 1,876 092 083 085 084
B73 x Tx303 1,678 094 094 092 0.89
B73 x Tzi8 2,107 094 085 082 083
B73 * Mo17(IBM) 1,989 093 094 092 091
NCRPIS diversity panel 7,47 0.87 086 0.92 NA

Plots evaluated detail the number of plots scored for PHT across all environments.
The other surveyed traits possessed comparable values within each family or panel
with the exception of NPH, which was not scored in the NCRPIS diversity panel. PHT,
DTA, EHT, and NPH detail the proportion of variance between and within lines
explained by between line variance after accounting for known environmental
variation in the respective trait.
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Table 2 Top height-associated family-nested QTL across RIL families

Combined RMIP

Chr Mb M PHT EHT DTA NPH Nearby annotations of interest
1 10 20 54 64 o] 0
1 29 47 36 0 4] 0
1 66 75 47 25 17 o
1 a3 82 45 64 95 51
1 184 ag 54 0 4] 59
1 204 17 43 44 40 0
1 249 148 71 66 0 0 brassinosteroid-deficient dwarf1 (Pettem 1956)
2 1 0 46 32 4] o
2 3 7 40 15 4] 0
2 90 76 44 " 76 EX
3 5 21 12 0 1] 0 crinkly leaves! (Beavis W et al. 1991)
3 10 34 34 23 o] 0
3 24 52 64 54 33 67
3 160 73 67 26 78 78
4 148 62 44 53 4] 0
4 235 115 52 43 12 )
5 89 70 27 51 40 0
5 201 109 69 a1 4] 1
6 92 19 21 20 4] 0
6 96 22 77 51 12 0
& 141 55 27 28 4] 12
6 147 58 21 0 4] 0
7 33 48 56 16 4] 67
7 135 73 52 61 37 17
7 143 &1 22 0 4] 0
7 152 &9 27 0 4] 0
7 155 a5 58 23 4] o
8 22 49 24 19 4] 0
8 121 64 69 a1 98 97
9 99 50 83 96 4] 15
9 111 55 34 19 47 40
9 133 [3¢] 64 17 4] )
10 5 15 19 " 15 7 crinkly feaves4 (Stinard and Robertson 1987)
10 140 (3] 26 0 4] 50
10 147 a1 36 13 4] )

The combined resample model inclusion probability (RMIP) details the number of models one or more markers located within 3 cM of the stated association was selected out
of the 100 models constructed for each trait (PHT, EHT, DTA, NPH). Each of the 100 models was calibrated from a family-stratified sampling of RiLs during bootstrapped joint-
linkage mapping. Mb denctes megabase pesitions in maize RefGenV1. cM denotes centimorgan positions of the composite NAM family genetic map.
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From QTL to genes

» Typically QTL regions identified contain many
genes/genetic factors
Molecular markers are a proxy of genetic factors

to which they are associated through linkage
disequilibrium (LD)

oring

Individual M1 M2 M3 M4 Phenotype
1 2 2 20

Interpretation

Genetic structure Quantitative Trait Loci (QTL) Covariates

N s

Markers Phenotype
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Mapping QTLs in breeding for drought tolerance in maize (Zea mays L.)
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Figure 2. Genetic linkage map was generated using an F3 population derived from SD34 x SD35. The map included 70 RFLP loci, scored in
about 120 individulas, and linkage analysis was done using MAPMAKER v2.0.

Summary

Grain yield in the maize (Zea mays L) plant is sensitive to drought in the period three weeks either side of flowering.
Maize is well-adapted to the use of restriction fragment length polymorphisms (RFLPs) to identify a tight linkage
between gene(s) controlling the quantitative trait and a molecular marker. We have determined the chromosomal
locations of quantitative trait loci (QTLs) affecting grain yield under drought, anthesis-silking interval, and number
of ears per plant. The F; families derived from the cross SD34(tolerant) x SD35(intolerant) were evaluated for these
traits in a two replicated experiment. RFLP analysis of the maize genome included non-radioactive DNA-DNA
hybridization detection using chemiluminescence. To identify QTLs underlying tolerance to drought, the mean
phenotypic performances of F5 families were compared based on genotypic classification at each of 70 RFLP marker
loci. The genetic linkage map assembled from these markers was in good agreement with previously published
maps. The phenotypic correlations between yield and other traits were highly significant. In the combined analyses,
genomic regions significantly affecting tolerance to drought were found on chromosomes 1,3,5,6, and 8. For yield,
a total of 50% of the phenotypic variance could be explained by five putative QTLs. Different types of gene action
were found for the putative QTLs for the three traits.
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Figure 3. QTL likelihood maps indicating LOD score for grain yield under drought (GYD), anthesis-silking-interval (ASI), and ears per plant
(EAR). The horizontal line at a height of 2.2 indicates the stringent threshold that the LOD score must ¢ross 10 allow the presence of 2 QTL 1o
be inferred.
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Using high-throughput mult
phenotyping to decipher the
architecture of maize drougt
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Abstract

Background: Drought threatens the food supply
the dynamic responses of plants to drought will
tolerant crops, as the genetic controls of these re

Results: Here we develop a high-throughput mt
to noninvasively phenotype 368 maize genotype
over a course of 98 days, and collected multiple 1
camera scanning, hyperspectral imaging, and X-r
We develop high-throughput analysis pipelines t
Of these i-traits, 10,080 were effective and heritat
internal drought responses. An i-trait-based genc
4322 significant locus-trait associations, represent
(QTLs) and 2318 candidate genes, many that co-
maize drought responsive QTLs. Expression QTL |
and distant regulatory variants that control the e
We use genetic mutation analysis to validate twc
ZmFABIA, which regulate i-traits and drought tol
candidate genes as drought-tolerant genetic mal
selection analysis, and 15 i-traits are identified as
tolerance breeding.

Condusion: Our study demonstrates that combi
optical phenotyping and GWAS is a novel and ef
genetic architecture of complex traits and clone
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