

Genome Editing-Guide RNA (sgRNA) Design

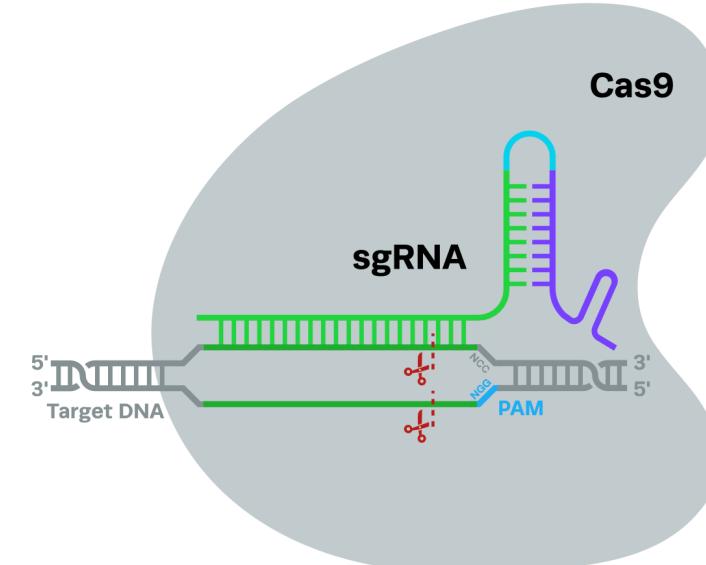
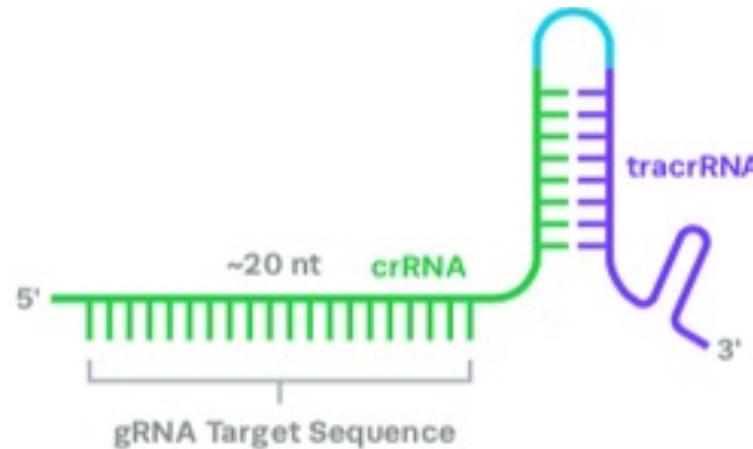
Selvaraju Kanagarajan
Associate Professor
Department of Plant Breeding¹

Where to start.....

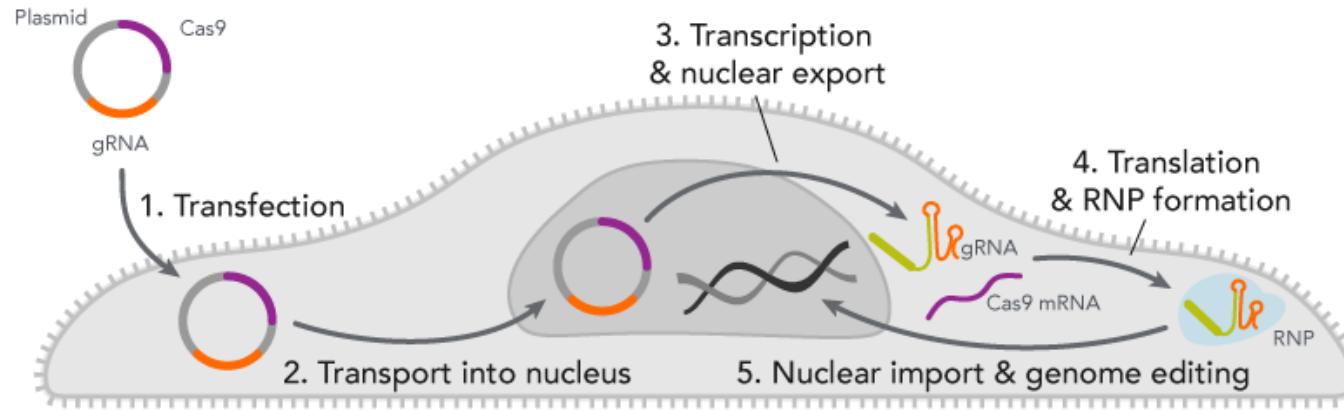
Method

Crop?

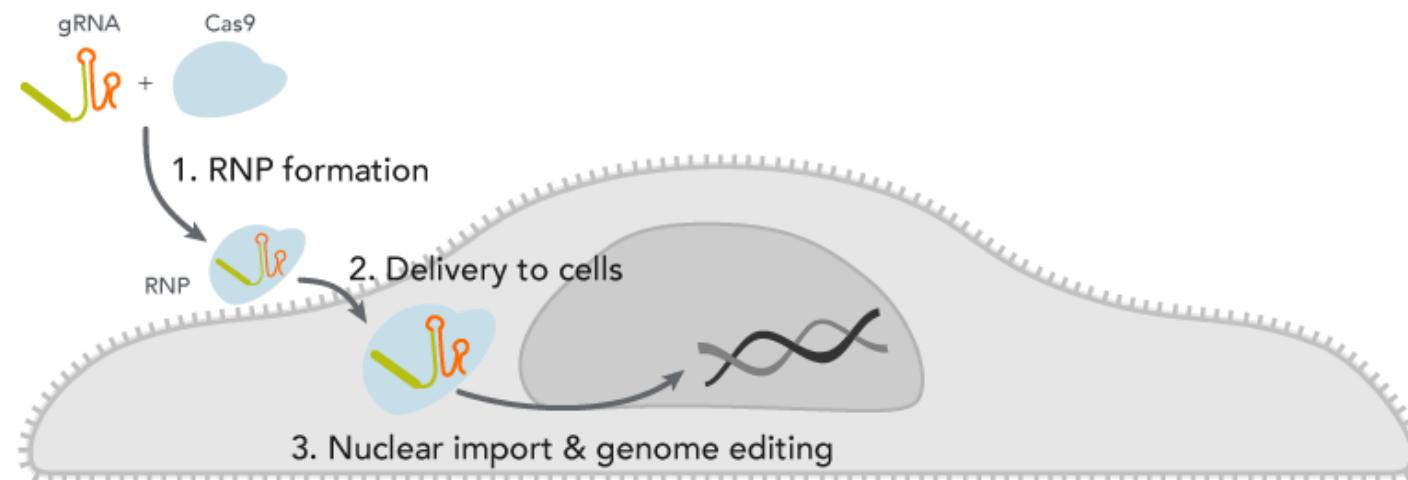
Tissue culture?



Gene Information and gRNA Design?

Mutant screening?


Regulation?

New Breeding Techniques (NBTs)-Targeted Gene Editing


- ❖ Clustered regularly interspaced short palindromic repeats and CRISPR-associated protein-9 (CRISPR-Cas9)
- ❖ Directing a guide RNA (gRNA) complementary to a defined target, together with a CRISPR-associated endonuclease, Cas9, to create double-stranded DNA cleavage
- ❖ gRNA: crispr RNA (crRNA), a 17-20 nucleotide sequence complementary to the target DNA, and a tracrRNA, which serves as a binding scaffold for the Cas nuclease

Plasmid-based editing (Transgene-free)

RNP-based editing (Transgene & DNA-free)

Antinutrient factors (ANF) in rapeseed

Seedcake/meal

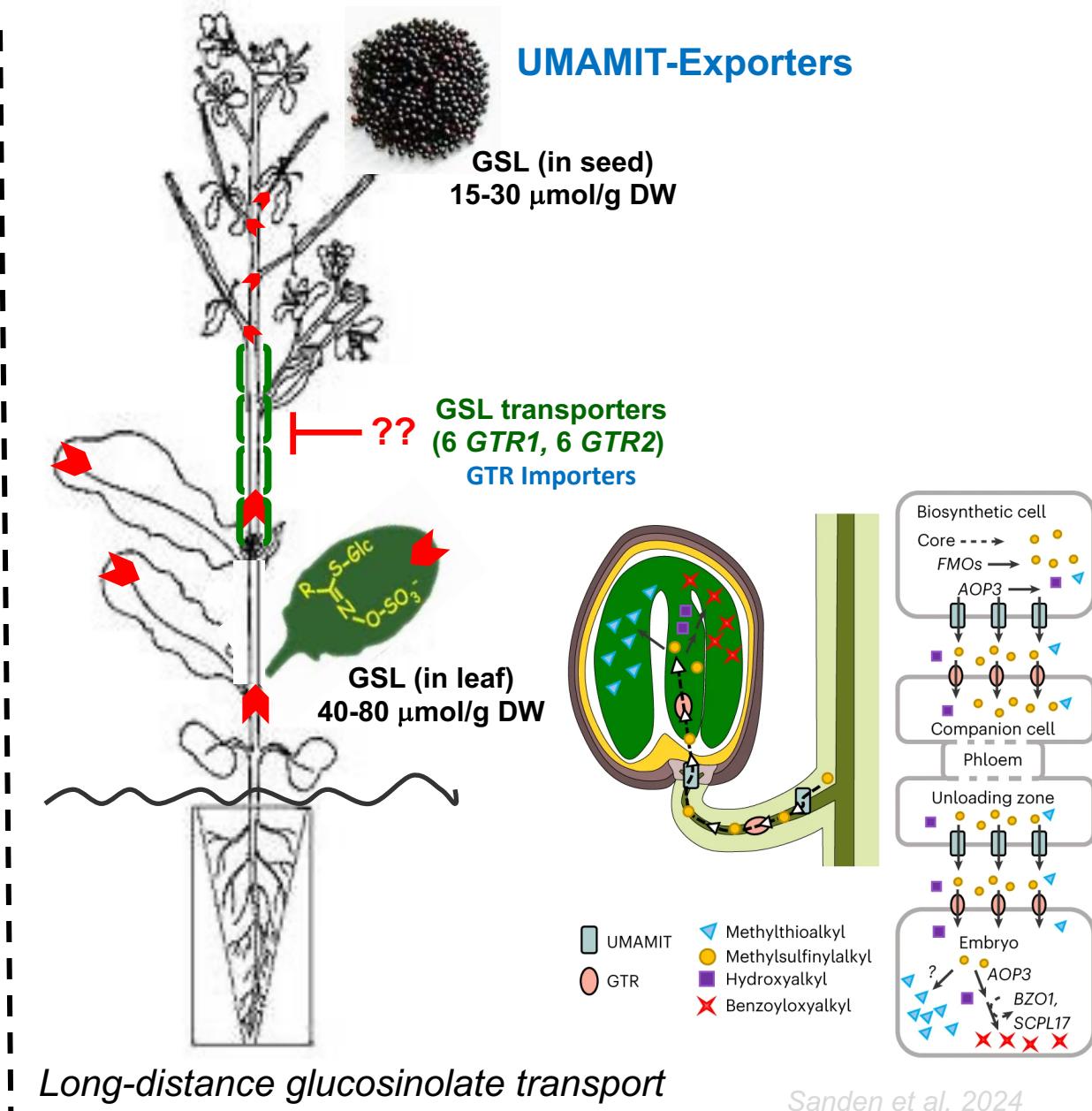
Protein: 35-45%

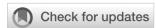
Rich in Tryp & Threonine

Good amounts of Lys, Met & Cys

Fiber: 10-12%

Fat: 3-5%

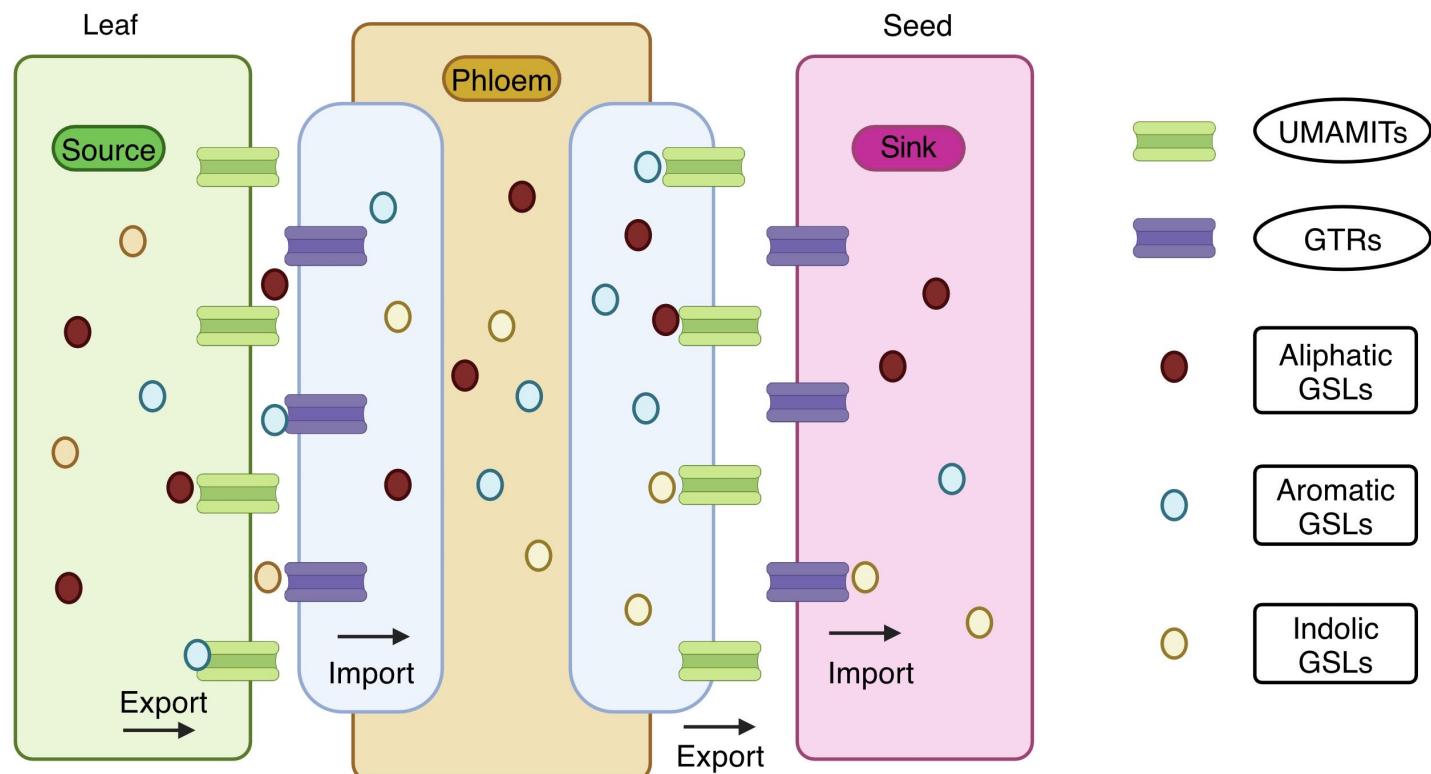



Photo: Anja Persson

Anti-Nutritional Factors

Glucosinolates: Sulfur-containing compounds-bitter-interfere with thyroid function

- ❖ Synthesized in vegetative tissues and transported to seeds-regulated by glucosinolate transporter (GTR) genes (*GTR1* and *GTR2*) and *UMAMIT* genes
- ❖ Glucosinolates-sulfur- and/or nitrogenous secondary metabolites
- ❖ Glucosinolates-defense compounds against pests


OPEN ACCESS

EDITED BY
Kanwarpal S. Dhugga,
HiBioS Inc., United StatesREVIEWED BY
Jasmeet Kaur,
Punjab Agricultural University, India
Zhenyu Wen,
KeyGene, United States*CORRESPONDENCE
Ravikesavan Rajasekaran
✉ ravikesavan@tnau.ac.in
Selvaraju Kanagarajan
✉ selvaraju.kanagarajan@slu.seRECEIVED 22 July 2024
ACCEPTED 30 September 2024
PUBLISHED 11 November 2024Manikandan A, Muthusamy S, Wang ES,
Ivarson E, Manickam S, Sivakami R,
Narayanan MB, Zhu L-H, Rajasekaran R
and Kanagarajan S (2024) Breeding and
biotechnology approaches to enhance the
nutritional quality of rapeseed byproducts
for sustainable alternative protein
proteins

Breeding and biotechnology approaches to enhance the nutritional quality of rapeseed byproducts for sustainable alternative protein sources- a critical review

Anandhavalli Manikandan^{1,2}, Saraladevi Muthusamy²,
Eu Sheng Wang², Emelie Ivarson², Sudha Manickam³,
Rajeswari Sivakami⁴, Manikanda Boopathi Narayanan³,
Li-Hua Zhu², Ravikesavan Rajasekaran^{4*}
and Selvaraju Kanagarajan^{2*}

¹Department of Genetics and Plant Breeding, Centre for Plant Breeding and Genetics, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India. ²Department of Plant Breeding, Swedish University of Agricultural Sciences, Lomma, Sweden. ³Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India. ⁴Centre for Plant Breeding and Genetics, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India.

- Transport of GSL- Source to Sink
- Usually Multiple Amino Acids Move in And Out Transporter (UMAMIT)- Exporter- Source into apoplast
- Glucosinolate transporters (GTRs) – Importer-Apoplast into the phloem
- UMAMIT Exports Phloem into the apoplast
- GTR imports into the Sink.

Gene identification

Functionally characterized genes from *Arabidopsis*

tair

Home Help Contact About Us Subscribe Login Register Institution: Swedish University of Agricultural Sciences (subscribed)

Search Browse Tools Portals Download Submit News Stocks

Locus: AT3G47960 [What's new on this page](#) [Add a Comment](#)

Representative Gene Model [AT3G47960.1](#)

Gene Model Type protein_coding

Other names: ATNPF2.10, GLUCOSINOLATE TRANSPORTER-1, GTR1, NPF2.10, NRT1/PTR FAMILY 2.10

Description Encodes a high-affinity, proton-dependent glucosinolate-specific transporter that is crucial for the transport of both methionine- and tryptophan-derived glucosinolates to seeds.

Center on AT3G47960 | Full-screen view

17,698,750 17,700,000

Araport11 - Protein Coding Genes

AT3G47960.1 Major facilitator superfamily protein

Annotations category relationship type keyword

Arabidopsis database

GTR1 gene

Brassica napus databases

Introduction Databases Details

Brassica Genome

 [Home](#) [Browse](#) [Search](#) [Tools](#) [Download](#) [Links](#) [Userguide](#)

Brassicaceae Database

- The **Brassicaceae Database (BRAD)** was previously a searchable Database of *Brassicaceae* genomic data hosted on the website "<http://brassicaidb.org>". For the policy and safety reasons, we moved it to the new website "<http://brassicaidb.cn>". It is now a new database which includes not only newly released genome sequences of *Brassicaceae* species, but also published genomic data of most other *Brassicaceae* species.
- In total, we provided services for 35 genomes or genome versions from 25 species (refer to [Species info](#)). The genomic data include mainly genome assemblies, predicted gene models and gene annotations.
- These data can be browsed in iBrowse or searched in BLAST. We continue offering the featured service of searching for syntenic genes, which are generated based on their synteny relationships to the genes in *Arabidopsis thaliana*.
- We will regularly update the database with newly released high-quality reference genomes.

News
BRAD V3.0 has been launched for trial. We welcome any feed back for improving the website.

Group Leader
Xiaowu Wang
E-mail: wangxiaowu@caas.cn

Website Developer
Haiwei Chen
E-mail: caas_iwt_chenhaiwei@163.com

Visitors

Pageviews: 12,921

 [Ensembl Plants Home](#)

 Brassica napus (AST_PRJEB5043_v1)

[HMMER](#) | [BLAST](#) | [BioMart](#) | [Tools](#) | [Downloads](#) | [Help & Docs](#) | [Blog](#)

 Brassica napus Assembly and Gene Annotation

 Centre National de Séquençage

Brassica napus Genome Browser

[Genoscope](#) [Home](#) [Browser](#) [Blat](#) [Synteny](#) [Download](#)

Browse Data

chrA01

Search using a sequence name, gene name, locus, or other landmark. The wildcard character * is allowed.

Search: Display:

chrA01:6,320,000..6,340,999 region of chromosome chrA01 from 6,320,000 to 6,340,999
chrC01:11,338,000..11,372,999 region of chromosome chrC01 from 11,338,000 to 11,372,999
BnaA01g00030D Gene prediction BnaA01g00030D

B. napus Browser

NCBI databases for *B. napus*

Search NCBI x Search

Results found in 22 databases

TAXONOMY

Brassica napus
Rape (*Brassica napus*) is a species of eudicot in the family Brassicaceae (mustard family).
Taxonomy ID: 3708

Was this helpful? Like Dislike

Genomes
Browse all *Brassica napus* genomes

Literature

Bookshelf	86
MeSH	39
NLM Catalog	10
PubMed	7,694
PubMed Central	31,076

Genes

Gene	149,762
GEO DataSets	3,448
GEO Profiles	0

Proteins

Conserved Domains	8
Identical Protein Groups	355,912
Protein	775,029
Protein Family Models	7
Structure	40

Genomes

Assembly / Genome	16
BioCollections	0

Clinical

ClinicalTrials.gov	0
ClinVar	0

PubChem

BioAssays	119
Compounds	2

NIH National Library of Medicine National Center for Biotechnology Information Log In

Search NCBI ...

Datasets Taxonomy Genome Gene Command-line tools Documentation BETA

Genome

Download a genome data package including genome, transcript and protein sequence, annotation and a data report

Selected taxon: **Brassica napus (rape)** Enter one or more taxonomic names

Filters

Download							Select columns	4 genomes	Rows per page	20	1-4 of 4
	Assembly	Scientific name	Modifier	Annotation	Size (Mb)	Level	Year	Action			
<input type="checkbox"/>	Da-Ae (reference) RefSeq: GCF_020379485.1 GenBank: GCA_020379485.1	Brassica napus rape	Da-Ae cultivar	NCBI RefSeq Submitter	1,001	Chromosome	2021	...			
<input type="checkbox"/>	Bra_napus_v2.0 RefSeq: GCF_000686985.2 GenBank: GCA_000686985.2	Brassica napus rape	ZS11 cultivar	NCBI RefSeq	975.8	Chromosome	2017	...			
<input type="checkbox"/>	AST_PRJEB5043_v1 GenBank: GCA_000751015.1	Brassica napus rape	Submitter		848.2	Scaffold	2014	...			
<input type="checkbox"/>	ASM1417057v1 GenBank: GCA_001417057.1	Brassica napus rape	CLR6430 isolate		768.2	Scaffold	2020	...			

Standard Nucleotide BLAST

BLASTN programs search nucleotide databases using a nucleotide query. [more](#)

Enter Query Sequence

Query subrange

Or, upload file

Job Title

Align two or more sequences

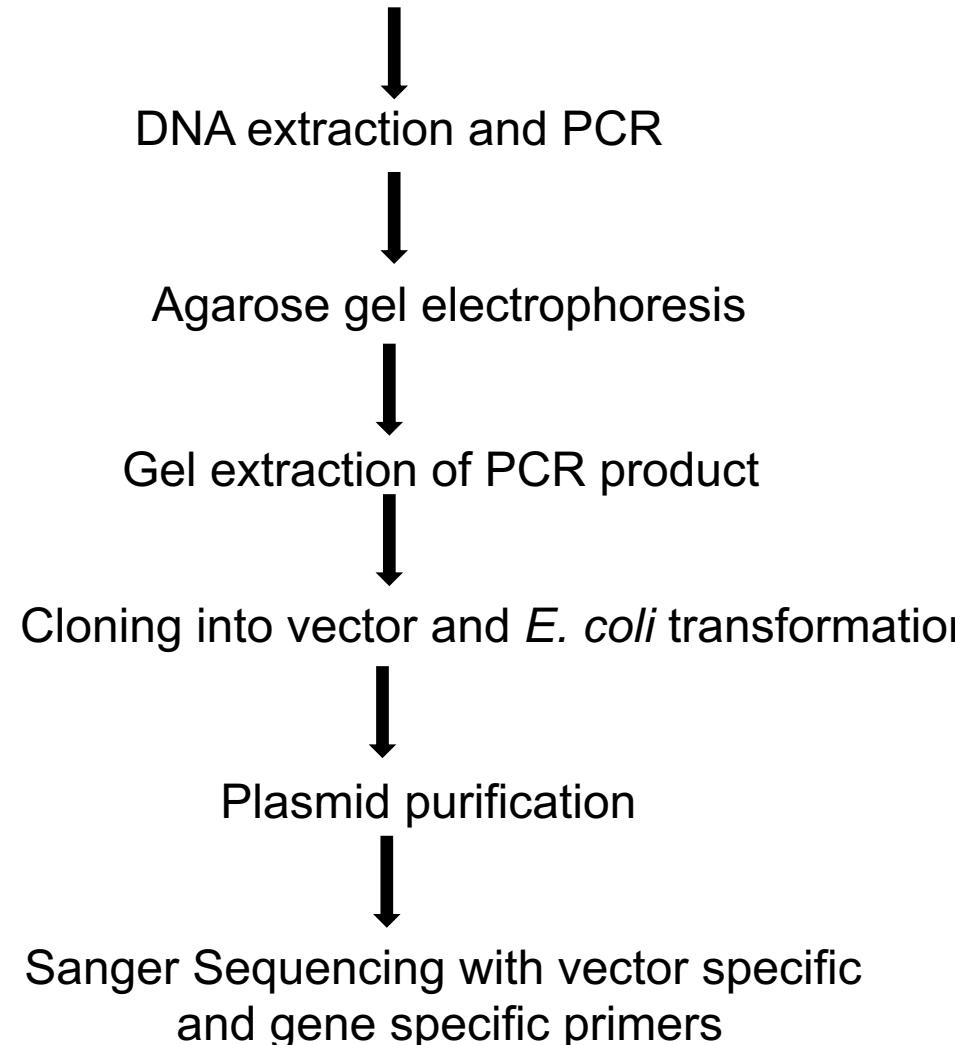
Choose Search Set

Database: Standard databases (nr etc.) rRNA/ITS databases Genomic + transcript databases Betacoronavirus

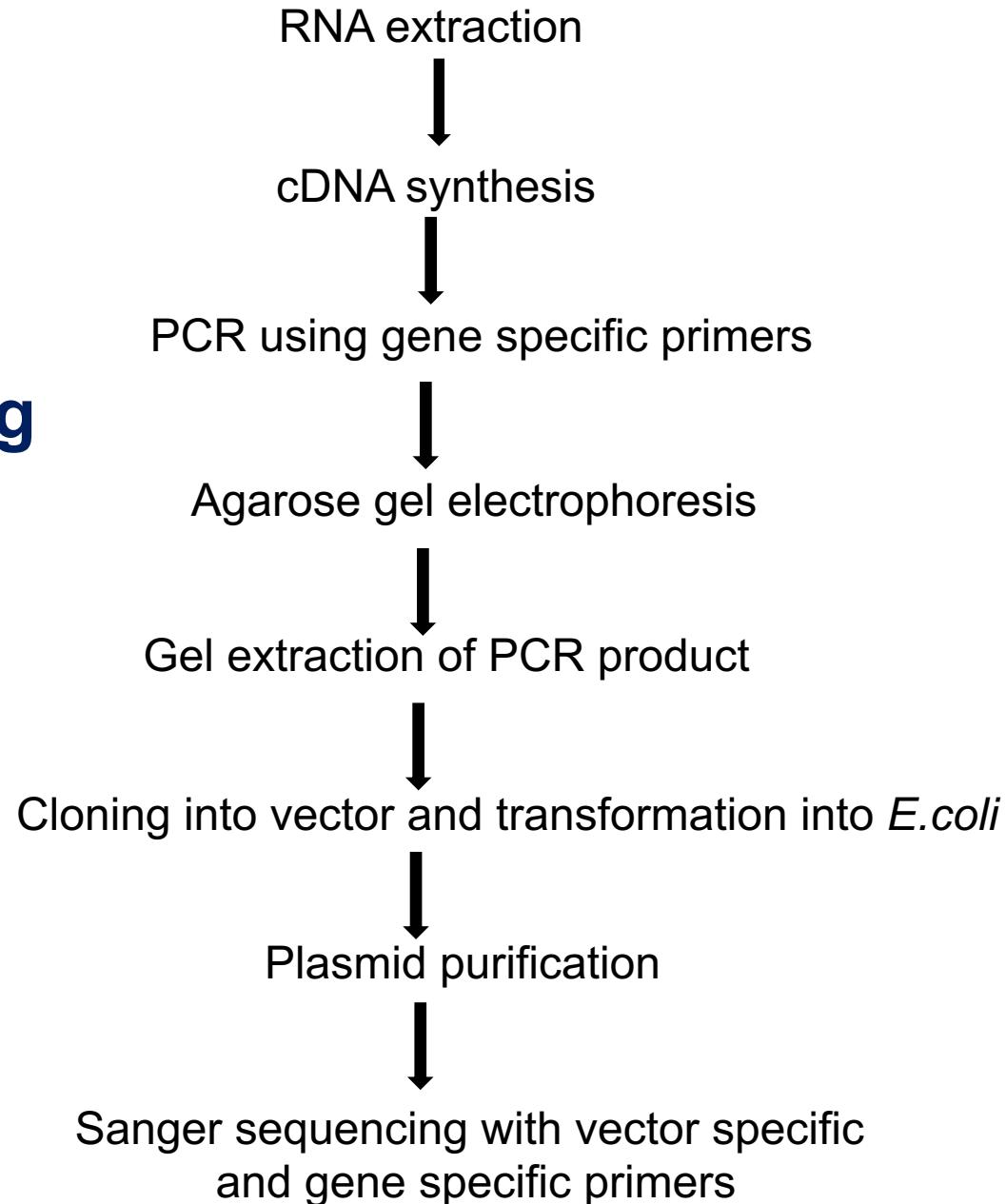
Organism: exclude [Add organism](#)

Exclude: Models (XM/XP) Uncultured/environmental sample sequences

Limit to: Sequences from type material


Entrez Query: [Create custom database](#)

Program Selection: Highly similar sequences (megablast) More dissimilar sequences (discontiguous megablast) Somewhat similar sequences (blastn)



General workflow for cloning of a target genes

Primer design based on untranslated regions/genes based on reference genome

General workflow for cloning of a target gene from cDNA

Off Target Prediction

CRISPR
RGEN Tools About Cas-OffFinder Microhomology Cas-Designer Database Analyzer Digenome-Seq Base Editing Prime Editing

Cas-OffFinder

A fast and versatile algorithm that searches for potential off-target sites of Cas9 RNA-guided endonucleases.

Citation info: Bae S., Park J., & Kim J.-S. Cas-OffFinder: A fast and versatile algorithm that searches for potential off-target sites of Cas9 RNA-guided endonucleases. *Bioinformatics* 30, 1473-1475 (2014).

Submit a new searching job, or [download an off-line version of Cas-OffFinder here](#).

Job title (Optional):

E-mail (Optional):

* The result will be notified by e-mail (searching job is working in sequence for many input data, therefore it would be convenient to receive the results by e-mail).

PAM Type

CRISPR/Cas-derived RNA-guided Endonucleases (RGENs)

- SpCas9 from *Streptococcus pyogenes*: 5'-NGG-3'
- SpCas9 from *Streptococcus pyogenes*: 5'-NRG-3' (R = A or G)
- StCas9 from *Streptococcus thermophilus*: 5'-NNAGAAW-3' (W = A or T)
- NmCas9 from *Neisseria meningitidis*: 5'-NNNNNGMTT-3' (M = A or C)
- SaCas9 from *Staphylococcus aureus*: 5'-NNGRRT-3' (R=A or G)
- CjCas9 from *Campylobacter jejuni*: 5'-NNNVRVAC-3' (V = G or C or A, R = A or G, Y = C or T)

Query Sequences

Query sequences (5' to 3'), one sequence per line.

Please write crRNA sequences **without PAM sequences** (e.g. without NGG for SpCas9). The length of each query sequence should be between 15 and 25 nt, and **all be the same length**:

```
CAGCAACTCCAGGGGGCGCAAGGAACCATTGTGTTAA
```

Mismatch Number (eq or less than) 0

DNA Bulge Size (eq or less than) 0

 offTarget

Home Contact us

CRISPR-GE targetDesign MMEJ-KO primerDesign offTarget seqDownload Help

offTarget: predict the potential off-target sites of Cas9/Cpf1 RNA-guided endonucleases

PAM type: SpCas9 from *Streptococcus pyogenes*: 5'-NGG-3'

* Or define your own PAM:

PAM sequence: NGG

PAM position: 3'

Guide length (nt): 20

Target (reference) genome: *Brassica napus* (Genoscope, v5)

Query

Please enter your target sequences and PAM. [\[.demo\]](#)

ID	Target sequence (5'-3')	PAM
Target sequence 1:		

Insert Delete Submit

Target Genome

Organism Type

Plants

Genomes

- Arabidopsis thaliana* (TAIR10) - Thale cress
- Oryza sativa* (OSv4) - Rice
- Solanum lycopersicum* (SL2.4) - Tomato
- Zea mays* (AGPv3) - Corn
- Chlamydomonas reinhardtii* (Chlre4)
- Solanum tuberosum* (PGSC v4.03) - Potato
- Glycine max* (v1.0) - Soybean
- Vitis vinifera* (IGGP_12X/Ensplost26) - European grapevine
- Manihot esculenta* (JGI 4.1) - Cassava
- Malus domestica* (JGI 1.0) - Apple
- Hordeum Vulgare* (Ensembl Plants 28) - Barley
- Nicotiana benthamiana* (v1.0.1)
- Fragaria vesca* (1.0) - Wild strawberry
- Citrus sinensis* (1.0) - Sweet orange
- Theobroma cacao* (CIRAD 1.0) - Cacao
- Theobroma cacao* (CGD 1.1) - Cacao
- Solanum lycopersicum* (SL2.5) - Tomato
- Musa acuminata* (MA1) - Banana
- Arachis ipaensis* (PeanutBase v1.0)
- Arachis duranensis* (PeanutBase v1.0)
- Actinidia chinensis* (from IKG) - Kiwifruit
- Brassica napus* (v4.1) - Rapeseed
- Glycine max* (v2.0) - Soybean
- Sorghum bicolor* (v1.0) - Cereal grass

Questions?

selvaraju.kanagarajan@slu.se